③ CPUの演算のしくみ【1】

✔ 学習のまとめ

2進法のことは2章で学んだのう 覚えておるかの?

■ コンピュータが扱えるのは 0 と 1 だけ

- CPU には非常に小さな (①) が大量に並べられている。CPU はそれらの大量の (①) があらわす ON と OFF の (②) の組み合わせで、複雑な情報の処理 を高速で行っている。
- CPU に計算処理をさせたいときは、ON と OFF をそれぞれ数値の(3)と(4)に対応させた(5)で命令する必要がある。

■ CPU が行う演算の種類

- (6) ⇒ = (3) か, 偽= (4) かであらわされる演算。
- (7) →計算によって数値を求める演算。計算結果を出力する。

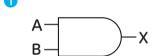
■ 論理回路と真理値表

• (8) ⇒ 論理演算を行う電子回路。 以下の 3 つの組み合わせで、複雑な演算をすることができる。

		回路図	記号	(9)	ベン図
(⑩ : 論理積回路)	A B X	A — X	X = A • B	(A) B
(① : 論理和回路)	A B X	A — X	X = A + B	A B
(1 2): 否定回路)	A X	A — X	$X = \overline{A}$	A

(13) ⇒論理回路のすべての入出力の結果を表にしたもの。

- ✓ スイッチ ✓ ON ✓ OFF ✓ 機械語 ✓ 真(1) ✓ 偽(0) ✓ 論理演算
- ✓ OR 回路(論理和回路) ✓ NOT 回路(否定回路) ✓ 真理値表


練習問題

1 2進法 1 桁では 0 と 1 の 2 通りの状態をあらわすことができる。では、 1 2 桁、 2 4 桁、 3 8 桁では何通りの状態をあらわすことができるか。 解答欄にそれぞれ記入しなさい。

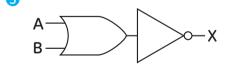
1	通り	2	通り	3	通り

- ② 次の ①~ ③は CPU が行う論理演算の結果について述べたものである。それぞれの結果に当てはまる論理回路の名称を、解答欄に記入しなさい。
 - 1 どちらも真のときだけ真
 - 2 どちらかが真のときに真
- ③ 真であれば偽, 偽であれば真

1	
2	
3	

A —	
В—	x

A	X
---	---


А	В	X
0	0	
0	1	
1	0	
1	1	

А	В	Χ
0	0	
0	1	
1	0	
1	1	

А	Χ
0	
1	

入	出力	
А	В	X
0	0	
0	1	
1	0	
1	1	

入	出力	
А	В	X
0	0	
0	1	
1	0	
1	1	